SRP and Research – Past, Present and Future

Charlie Ester, Manager, Water Resource Operations
SWAN; November 10, 2014
SRP manages six reservoirs on the Salt (4) and Verde (2) rivers and one on East Clear Creek in Arizona, and operates approximately 260 groundwater wells, which provide a renewable water supply to the 250,000 acre service area.
Water Resource Operations

Water Resource Operations is responsible for the development of conjunctive water resource management planning for reservoir and pumping operations, for the coordination of emergency reservoir operations and for weather forecasting in support of SRP’s water and power business needs.

The water resource planning assures an adequate and reliable source of water for our shareholders. Emergency reservoir operations are vital to maintain the safety and integrity of the dams. Weather forecasting provides support for routine and emergency operation of the SRP’s reservoir and electric distribution systems which increase system reliability and safety as well as augments energy resource planning.

To accomplish this, our hydrologists, meteorologists and engineers monitor pertinent water and weather data. Our knowledge and experience in data analyses are paramount to our mission. We manage SRP’s water resources to sustain life and economic viability in the Valley integrating our expertise and leadership in weather forecasting, hydrology, water operations, management and planning.
Past Research

- Urban Heat Island
- Global Warning and Arizona Climate Change
- North American Monsoon
- Watershed Snow Pack Evolution
- Weather Modification
- A Probabilistic Assessment of Threats to Surface Water Resources in Watersheds of the Lower Colorado River Basin

- Paleoclimate and Paleohydrology Of the Salt and Verde Watersheds as determined by Tree-ring Analysis
- Watershed Research and Education Program Directed Grant (WREP)
- WREP Flood Discharge Analysis
Urban Heat Island
A Probabilistic Assessment of Threats to Surface Water Resources in Watersheds of the Lower Colorado River Basin

Kevin W. Murphy, Arizona State University
Andrew W. Ellis, Virginia Polytechnic Institute and State University

SALT & VERDE RIVER WATERSHEDS
High climate variability poses drought risk to a reservoir system serving 40% of Phoenix, AZ water demand.

A detailed threat assessment is required for:
- Sustainability planning
- Adaptation to future climate change scenarios

ANALYTIC CHALLENGES
122-year historical record – just one temporal sequence.
Distinct seasons: Winter = October 1 to April 30
Summer = May 1 to September 30
Covariance of flows from multiple watersheds.
Antecedent season runoff dependencies.
Highly skewed data, stationarity assessment, autocorrelations, spectral properties, ...

OBJECTIVES
I. Develop methodology for stochastic simulation modeling of net basin supply:
 - Runoff less Miscellaneous Losses
II. Generate 10,000 year multivariate time series, by watershed-season.
III. Characterize drought periods by extreme value statistical analysis.

CONCLUSION: Stochastic modeling illuminates the full range of potential drought severity, providing quantitative guidance to risk management.

Support provided by: The Salt River Project, and the ASU Graduate and Professional Student Association
Applied Research

- Urban Heat Island
- Climate Change Analysis
- Tree Ring Streamflow Reconstruction
Example of Applied Research Used in Water Resource Planning at SRP

Revising Reservoir Planning Based On Vulnerability To Sustained Drought In The Past And Future

- Tree Ring Streamflow Reconstruction
- ASU Climate Change Sensitivity Analyses (Ellis et al, 2008):
Salt River Project Historic Drought Periods
(Average Runoff 1913–2010 = 1,172,215 AF)

Drought of Record

Year

% Average

1898 - 1904
35%

1900

1942 - 1948
62%

1948

1953 - 1957
47%

1957

1974 - 1977
52%

1977

1995 – 2014
??%

2014

19+ Years
Planning Assumptions

- 950 KAF Full Demand
- 325 KAF Maximum Pumping
- Historical Drought Of Record 1898-1904
- Allocation/Pumping To Manage For DOR
Salt River Project Historic Drought Periods

(Average Runoff 1913–2010 = 1,198,536 AF)

- 7 Years: 1898 - 1904, 35%
- 7 Years: 1942 - 1948, 62%
- 5 Years: 1953 - 1957, 47%
- 4 Years: 1974 - 1977, 52%

Longer Period Of Sustained Drought
What Can Tree-Ring Analysis Tell Us About Pre-20th Century Droughts?
Conclusions

- Water deficits due to Arizona droughts are unlikely to be offset by water excesses in the Upper Colorado River Basin (UCRB)

- Reservoir storage and the high volume water supply of the large UCRB reservoirs may allow continued buffering during climate stress

- Increasing demand in the Colorado River basin and climatic change are additional factors that may exacerbate the effects of joint drought

- Preliminary examination of El Niño, La Niña influences and oceanic indices such as the Pacific Decadal Oscillation (PDO), and the Atlantic Multi-decadal Oscillation (AMO) suggest linkage to some – but not all joint droughts
Analysis conclusions:

From 1975 to 1995, Arizona was very wet (25% more than average)
Severity of Current Drought in Context of Reconstructed Record: Salt + Verde + Tonto Reconstruction

Current drought was about as severe as 1950s in terms of flows averaged over 11 years.

8 other droughts were as severe, according the tree-ring record.

Late 1500s megadrought was much more severe.
The 11-year period was 1575 – 1585.

11-Year Drought With 70% Of Historical Gaged Median Inflow
SRP Storage, Pumping & Water Allotment Planning

Reservoir Storage (KAF)

Ground Water Production (KAF)

Minimum Pumping

Maximum Pumping

Median Inflow

Drought of Record

11-year Tree-ring Drought with previous planning scenario

11-year Tree-ring Drought with new planning scenario

3.0 af/ac

2.5 af/ac

2.0 af/ac

?
SRP Storage, Pumping & Water Allotment Planning

Reservoir Storage (KAF)

Ground Water Production (KAF)

Median Inflow

11-year Tree Ring Drought

3.0 AF/AC

2.0 AF/AC

Year
New Planning Guidelines

- 900,000 AF -- full demand
- 325,000 AF -- maximum pumping (start earlier)
- Tree-ring drought of record, 1575-1585
- Use revised allocation and pumping plan to manage for the 11-year tree-ring drought
- Demand mostly urban
Time To Rethink Old Assumptions
• Reconstructed flow was 21% of normal* in 2002, 22% of normal in 1996
• No other reconstructed flow from 1330 to 2005 was lower than 25% of normal.
• Tree growth recovered with wetter conditions in 2005

*normal is 1914-2007 mean, water year, Salt+Verde+Tonto
ASU sensitivity analyses (Ellis et al, 2008):

- Each 1 degree C of temperature rise yields a 6 to 7 percent reduction in streamflow (increased ET).
- 10 percent less precipitation yields 15 to 20 percent less streamflow.
- +3 degrees C with 10 percent less precipitation yields 37 to 42 percent less streamflow.

Projections of Future Changes in Climate

Precipitation increases very likely in high latitudes

Decreases likely in most subtropical land regions
How Vulnerable Are We?

What is minimum annual inflow that allows SRP to maintain carryover storage in perpetuity? (i.e., the reservoir system does not dry up)

Examined:

- Historical, instrument-era record (110 years)
- Tree-ring record (1,000 years)
- Climate change, GCM scenarios (future decades)
How Vulnerable Are We?

<table>
<thead>
<tr>
<th>PERCENT OF MEDIAN INFLOW</th>
<th>YEARS TO RESERVOIR DRYUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>INDEFINITE</td>
</tr>
<tr>
<td>63</td>
<td>50+</td>
</tr>
<tr>
<td>60</td>
<td>19.5</td>
</tr>
<tr>
<td>55</td>
<td>9.3</td>
</tr>
<tr>
<td>50</td>
<td>7.3</td>
</tr>
<tr>
<td>48</td>
<td>6.4</td>
</tr>
<tr>
<td>45</td>
<td>5.4</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Simulated Reservoir Storage for a Range of Perpetually Reduced Inflows
(as a percent of historical median)
In a climate changing world the question becomes: How much worse (drying) before previous droughts become a problem?

<table>
<thead>
<tr>
<th>Period</th>
<th>Source</th>
<th>Duration (yrs)</th>
<th>Flow Reduction</th>
<th>Average Annual % of Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1214-1217</td>
<td>Tree-ring</td>
<td>4</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>1579-1585</td>
<td>Tree-ring</td>
<td>7</td>
<td>15%</td>
<td>50%</td>
</tr>
<tr>
<td>1666-1670</td>
<td>Tree-ring</td>
<td>5</td>
<td>20%</td>
<td>45%</td>
</tr>
<tr>
<td>1817-1823</td>
<td>Tree-ring</td>
<td>6</td>
<td>20%</td>
<td>48%</td>
</tr>
<tr>
<td>1898-1904</td>
<td>Historical</td>
<td>7</td>
<td>20%</td>
<td>48%</td>
</tr>
<tr>
<td>1999-2002</td>
<td>Historical</td>
<td>4</td>
<td>20%</td>
<td>40%</td>
</tr>
</tbody>
</table>
SRP Storage, Pumping & Water Allotment Planning

- Reservoir Storage (KAF)
- Median Inflow
- Groundwater Pumping (KAF)

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

- 325
- 250
- 175
- 125
- 75

2.0 AF/AC

63% Median
SRP Storage, Pumping & Water Allotment Planning

Reservoir Storage (KAF)

Groundwater Pumping (KAF)

Median Inflow

63% Median

2.0 AF/AC

Year

1

2

3

4

5

6

7

8

9

10
SRP Storage, Pumping & Water Allotment Planning

Medan Inflow

Groundwater Pumping (KAF)

Reservoir Storage (KAF)

63% Median

2.0 AF/AC
SRP Storage, Pumping & Water Allotment Planning

- Reservoir Storage (KAF)
 - Median Inflow
 - 325
 - 250
 - 175
 - 125
 - 75

- Groundwater Pumping (KAF)
 - 2.0 AF/AC
 - 63% Median

- Years 1 to 10

Median Inflow

63% Median
Storage Necessary to Recover to the Target 63% Line

<table>
<thead>
<tr>
<th>Historical Drought</th>
<th>Reduction</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
<th>Year 9</th>
<th>Year 10</th>
<th>Year 11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212-1218</td>
<td>20%</td>
<td></td>
<td>544</td>
</tr>
<tr>
<td>1576-1586</td>
<td>15%</td>
<td></td>
<td>913</td>
</tr>
<tr>
<td>1665-1671</td>
<td>20%</td>
<td></td>
<td>515</td>
</tr>
<tr>
<td>1817-1824</td>
<td>20%</td>
<td></td>
<td>869</td>
</tr>
<tr>
<td>1895-2005</td>
<td></td>
<td>913</td>
</tr>
<tr>
<td>1998-2004</td>
<td></td>
<td>913</td>
</tr>
</tbody>
</table>

Historical Drought:
- **1212-1218:** 20% reduction.
- **1576-1586:** 15% reduction.
- **1665-1671:** 20% reduction.
- **1817-1824:** 20% reduction.
- **1895-2005:** Years to consider for recovery.
- **1998-2004:** Years to consider for recovery.

Recovery Water (KAF):
- **Year 1:**
- **Year 2:**
- **Year 3:**
- **Year 4:**
- **Year 5:**
- **Year 6:**
- **Year 7:**
- **Year 8:**
- **Year 9:**
- **Year 10:**
- **Year 11:**
- **Total:**
Current Research

• Northern Arizona University
• U of A: SWANN
• Flowtography
• Others
Understanding hydrologic and natural resource responses to Forest restoration

Salt River Project and Northern Arizona University Collaboration
Snow and Soil Moisture in Thinned Forests

Biophysical Monitoring
Fractional snow cover and SWE estimation in alpine-forested environments using remotely sensed data and artificial intelligence

Elzbieta Czyzowska, Katherine Hirschboeck, Willem van Leeuwen, Stuart Marsh, Wit Wisniewski

University of Arizona, Tucson, USA

presented to Salt River Project, 2014-07-24
Flowtography

December 12, 2014

Salt River Project (SRP)
Flowtography
Flowtography
Big Springs (MS1) Stage Height (ft.)

- Time (min)
- T-Gage Elevation (Stage ft.)
- Stage Height (ft.)

Flowtography
Flowtography
Quantified the effects of forest restoration treatments on:

a. Surface water discharge
 j. Near surface/above canopy winds

b. Evapotranspiration
 k. Microscale and mesoscale climate

c. Precipitation quantity/distribution
 l. Soil-moisture storage

d. Snow accumulation/distribution
 m. Groundwater storage/discharge

e. Snow quantity, retention and melt
 n. Sediment yield and deposition

f. Sublimation
 o. Water quality

g. Partitioning radiation balance

h. Partitioning energy balance

i. Air and soil temperature patterns

• The research should include the source areas for surface water and groundwater as it relates to the water budget of a specific research basin.
• Because we are dealing with climate variability and restoration at the same time, we expect the research to address what hydrologic response can be attributed to restoration and what hydrologic response may be due to climate variability.
If I restore it, it will come!
That can’t be true?
Research

How do we know forest restoration is working?

What impacts do forest restoration treatments (and specifically the treatments as defined by the Four Forest Restoration Initiative, 4FRI) for the Salt and Verde watershed have on the hydrologic function at various temporal and spatial scales?
Research Collaborative
(ASU, UA, NAU, TNC, University of Utah, Rocky Mountain Research Center, Others)

• Addressing research objectives with an integrated effort.
• Creating efficiency by avoiding unnecessary duplication of effort.
• Strive to incorporate top-level and cutting edge research.
• Eliminate barriers for researchers to work across universities by enabling them to apply for funding and perform research jointly.
• Transparency among research institutions.
How are research findings integrated into forest management?

- Leadership
- Implementation of Adaptive Management
- Policy
- Industry (Long-term Maintenance Plan)
- Education and Outreach
- Investment (Not just $$$)
Partnerships and Stakeholders

It takes a village!

Investment

Healthy, Sustainable, Fire Resistant, and Resilient Ecosystem.

Science/Research

Adaptive Management

Policy

Long Term Commitment

Necessitates

Enables

Requires

Inform

Establishes
Our Choice

Pay Some Now?

Pay a Lot Later?