Participatory modelling for sustainable river catchment management

Nick Jones – PhD Researcher Email: <u>nick7.jones@uwe.ac.uk</u>, Twitter: @NickIceJones Supervisors: Prof Lindsey McEwen, Prof Chad Staddon and Dr Chris Parker

Contents

- * Project background
- * Aims
- * Methodology
- * Results

What is fluvial geomorphology?

Fluvial geomorphology

(Flow and sediment dynamics, channel form and habitats)

Engineering design (Channel dimensions and hydraulics)

Riverine ecology (In-channel and

floodplain habitats)

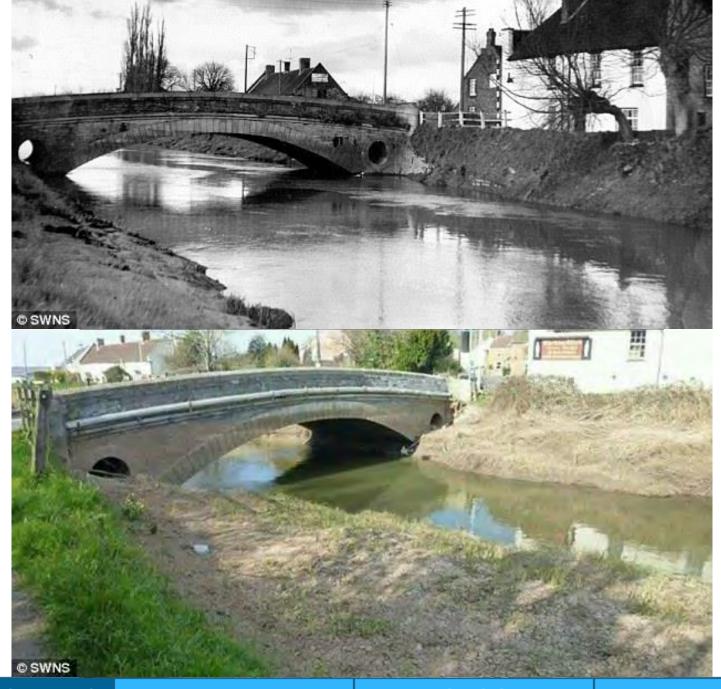
Project background

Aims

Methodology

Associated impacts

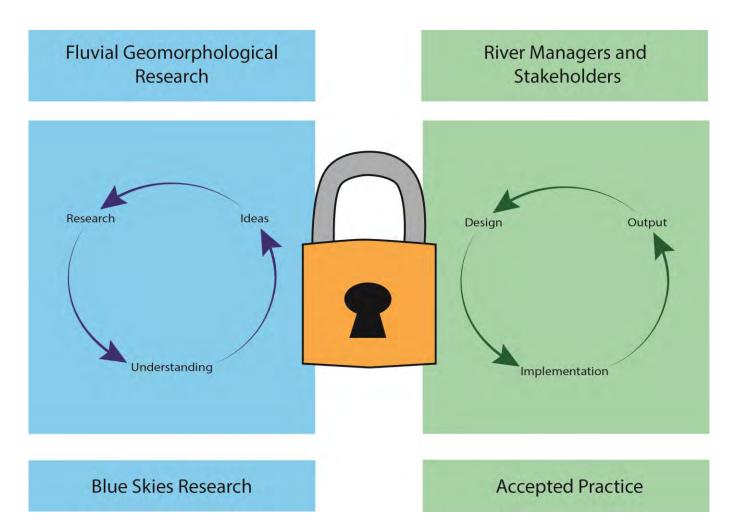
Flooding


Ecology

Project background

Aims

Methodology

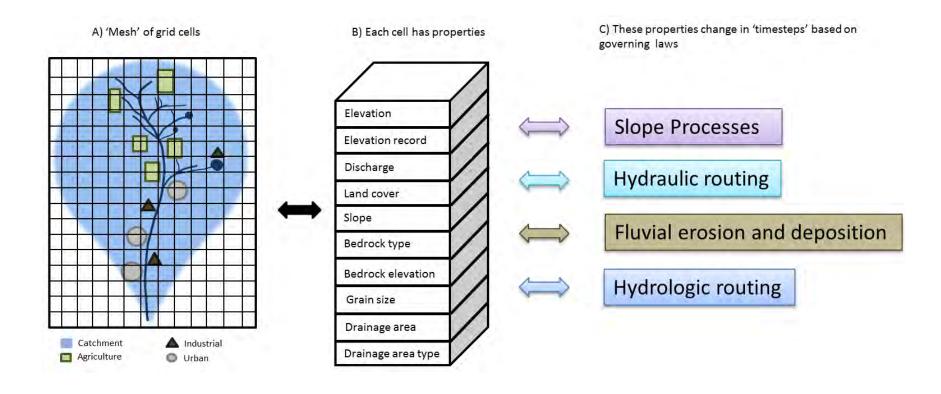

Project background

Aims

Methodology

The Water Framework Directive (2000/60/EC)

- The WFD specifically refers to the importance of fluvial geomorphology in achieving a "good ecological status" under 'hydromorphology'
- The WFD recognises the importance of engaging with stakeholders in the process of managing water resources


"The paradigm lock occurs because scientists do not grasp what managers require, and managers and stakeholders do not appreciate the scientific alternatives available" (Gregory et al., 2008)

Project background

Aims

Methodology

```
PERFECT (Littleboy et al, 1991)
     SIBERIA (Willgoose et al. 1991)
                          DRAINAL (Beaumont et al. 1992)
  GILBERT (Chase, 1992)
                                     ARCU (Smithers and Caldecott, 1993)
                                                  DELIM (Howard, 1994)
   GOLEM (Tucker and Slingerland, 1994)
                                                     GUEST (Misra and Rose, 1996)
   HSPF (Bicknell et al. 1996) RAT (Graf, 1996) CAESAR (Coulthard et al. 1997)
                 A selection of the developed models.
  CASCADE (Braun and Sambridge, 1997)
                                                MIKE-SHE (Renard et al, 1997)
 ZSCAPE (Densmore et al. 1998)
                                                CHILD (Tucker and Bras, 2000)
                            EROS (Crave and Davy, 2001)
                                                   LAPSUS (Schoorl et al. 2002)
APERO/CIDRE (Carretier and Lucazeau, 2005)
                                                REAS (Wallerstein et al. 2006)
 SIAM (Gibson and Little, 2006)
                                ST:REAM (Parker et al. 2009)
    CAESAR-Lisflood (Coulthard et al. 2011)
                                               LAPSUS-D (Keesstra et al, 2013)
Project background
                             Aims
                                                Methodology
                                                                          Results
```


"Physical models can be very good at reproducing sediment behaviour though they suffer from a number of disadvantages, mostly relating to scaling, which normally restrict their application to relatively short reaches of river" (Coulthard et al. 2012)

Project background

Animation - flow

Example: CEASAR-Lisflood

Project background

Aims

Methodology

How do you get stakeholders using these models?

SIBERIA (Willgoose et al. 1991)

GILBERT (Chase, 1992) DRAINAL (Beaumont et al. 1992) PERFECT (Littleboy et al, 1991)

GOLEM (Tucker and Slingerland, 1994)ARCU (Smithers and Caldecott ,1993)HSPF (Bicknell et al. 1996)GUEST (Misra and Rose, 1996)DELIM (Howard, 1994)CAESAR (Coulthard et al. 1997)MIKE-SHE (Renard et al, 1997)CASCADE (Braun and Sambridge, 1997)RAT (Graf, 1996)CHILD (Tucker and Bras, 2000)ZSCAPE (Densmore et al. 1998)EROS (Crave and Davy, 2001)LAPSUS (Schoorl et al. 2002)

APERO/CIDRE (Carretier and Lucazeau, 2005) SIAM (Gibson and Little, 2006) ST:REAM (Parker et al. 2009)

CAESAR-Lisflood (Coulthard et al. 2011) LAPSUS-D (Keesstra et al, 2013)

Project background	Aims	Methodology	Results
--------------------	------	-------------	---------

Participatory modelling

"Participatory modelling describes a diverse range of modelling activities whose common element is that they involve stakeholders in one or more stages of the modelling process, from data collection through to model construction and use." (Hare, 2011)

Hare's participatory modelling framework

Defines seven criteria:

- 1. Participatory modelling purpose
- 2. Model type
- 3. Stakeholders involved
- 4. Timing of events
- 5. Participatory methods used
- 6. Participation mode
- 7. Skills needed to organize and implement the participatory modelling

Research aims

- 1. To develop and evaluate a catchment-scale cellular model of sediment dynamics that can be used by stakeholders to engage in decision-making processes of sustainable river catchment management
- 2. To establish, implement and critically analyse a participatory modelling approach in the process of developing a catchment-scale cellular model of sediment dynamics

Methodology

1. Participatory modelling purpose

- * Quality
- * Acceptance
- Integration

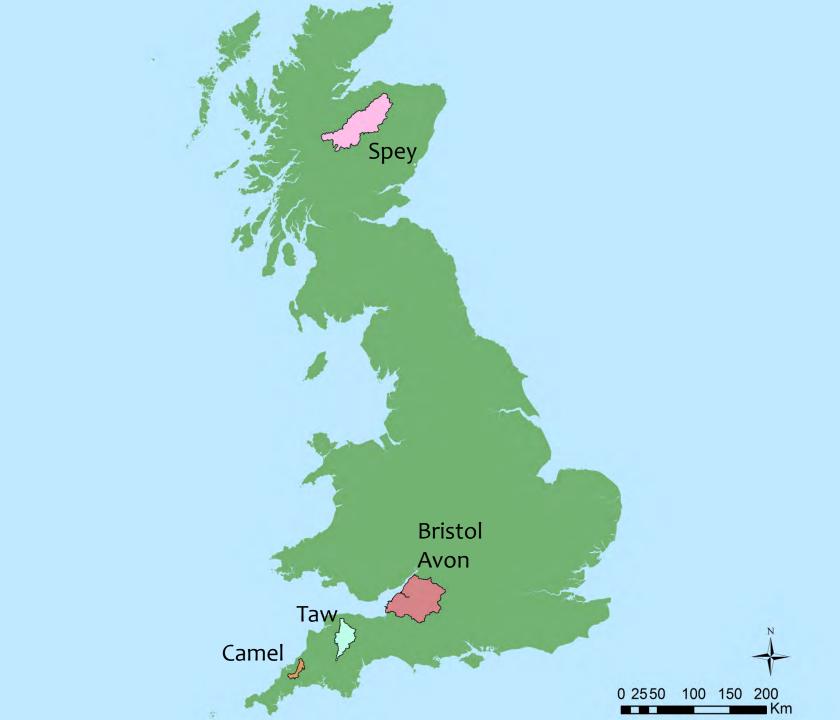
Methodology

2. Model type

```
43
           (17, "A"): 98, (17, "B"): 98, (17, "C"): 98, (17, "D"): 98, # Supra-litoral rock
           (18, "A"): 98, (18, "B"): 98, (18, "C"): 98, (18, "D"): 98, # Supra-litoral sediment
44
           (20, "A"): 98, (20, "B"): 98, (20, "C"): 98, (20, "D"): 98, # Littoral sediment
45
46
47
           # Mountain habitat
           (13, "A"): 35, (13, "B"): 56, (13, "C"): 70, (13, "D"): 77} # Montane habitats used -
48
49
50 # Intiatalise the incomming parameters for each cell in the catchment
510 def init (self, precipitation d, slope d, land d, soil d):
       self.precipitation d = precipitation d
52
53
       self.slope d = slope d
       self.land d = land d
54
55
       self.soil d = soil d
56
57 # Method to calculate SCS soil type from HOST data
58⊖ def SCSsoil(self):
59
       # Lookup dictionarys for incoming landuse and soil type
       for soil, value in self.HOST SCS soil.items():
60
61
           if soil == self.soil d:
62
               return value
63
64 # Method for calculating the CN number from LCM2007 data
650 def SCSCN(self, SCS soil):
66
       # Iterate through the SCS table and match the land cover and soil type to the correct CN
```

Project background

Aims


Methodology

3. Stakeholders involved

- * The organising team (me and supervisory team)
- Multiple case study approach
 - The stakeholders primarily consist of policy-makers and management groups involved at the catchment scale

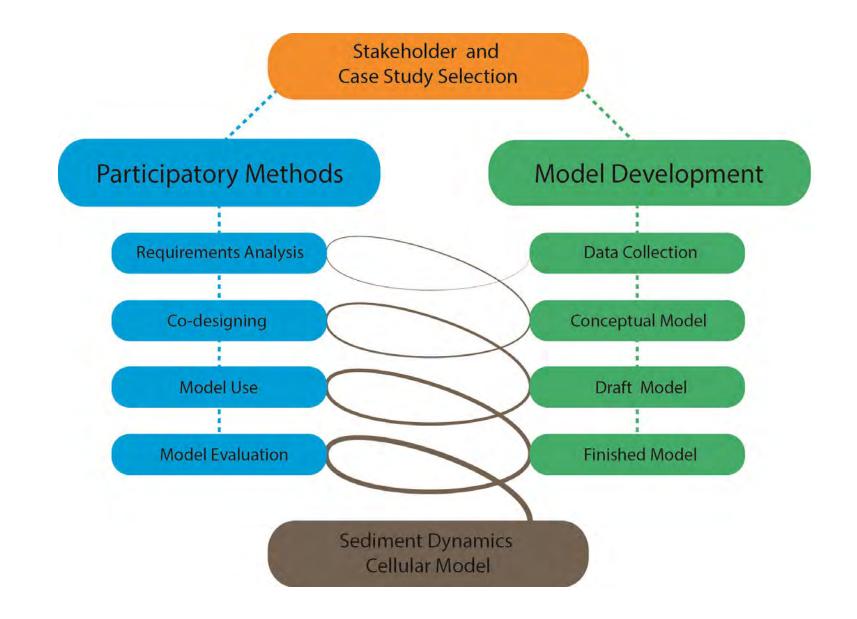
Methodology

Stakeholder Type

	Public bodies	Private Bodies	Conservation Organisations (Wildlife Trusts and Rivers Trusts)	Fisheries and Agriculture
Bristol Avon	Environment Agency, Wiltshire Council, Bristol Council, Bath and North East Somerset Council	Wessex Water	Avon Wildlife Trust, Bristol Avon Rivers Trust	
Spey	Scottish Environmental Protection Agency, National Park Authority, Scottish National Heritage		Spey Catchment Initiative	Fisheries board
Taw	Environment Agency		Devon Wildlife Trust, West Country Rivers Trust, Farming and Wildlife Advisory Group, Silvanus Trust, North Devon Biosphere	National Farmers Union
Camel	Environment Agency, Natural England			

Project background

Aims


Methodology

4. Timing of events and 5. Participatory methods

Project background

Aims

Methodology

Project background

Ai<u>ms</u>

Methodology

6. Participation mode and 7. Skills needed


* Participation mode:

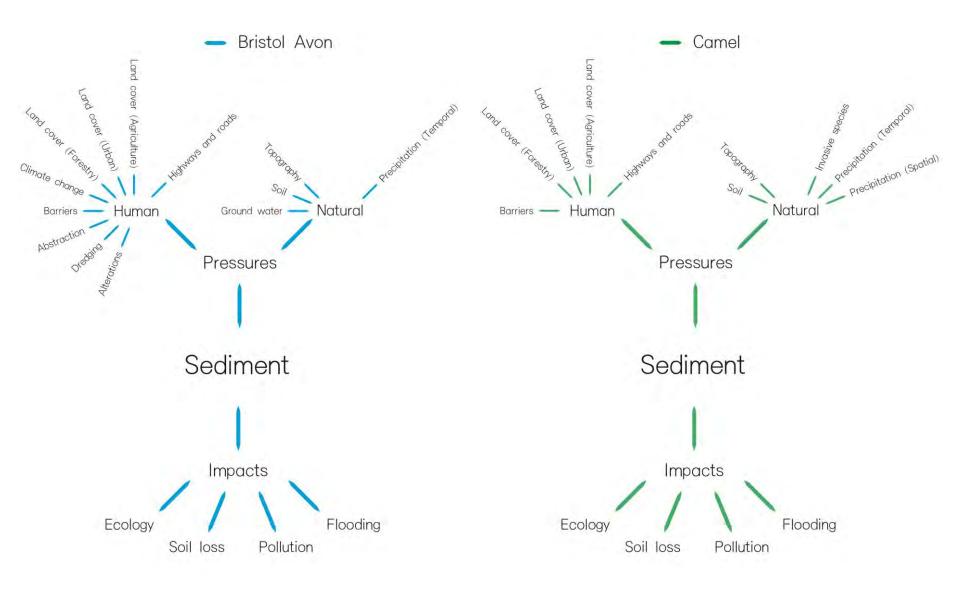
- Stakeholders are involved as a group with homogeneous interests
- * Skills needed:
 - * Modelling skills
 - Facilitation skills

Methodology

Project background Aims Methodology Results

Requirements analysis workshop

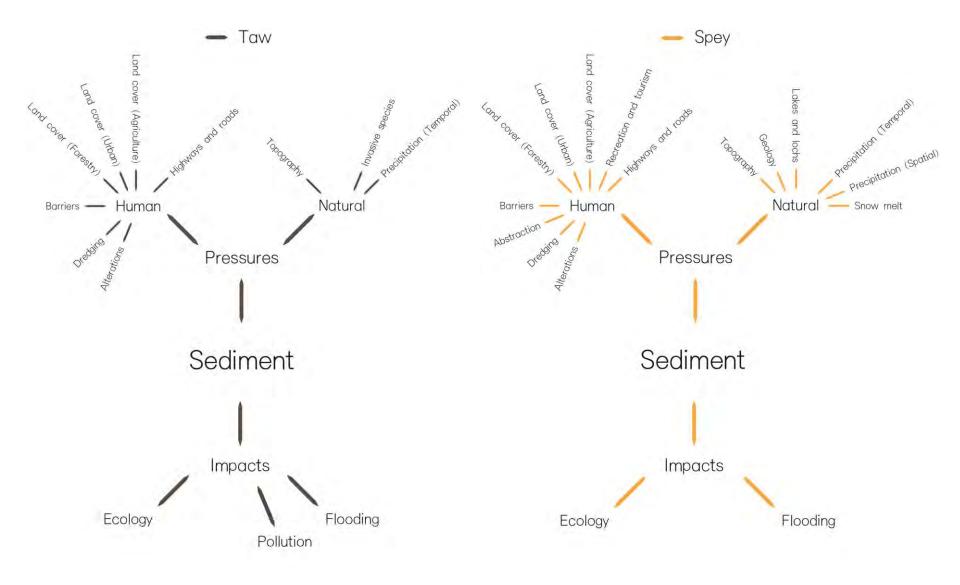
- * Two activities:
 - Introduction to cellular modelling
 - Activity-oriented questions
- * Thematic analysis using NVivo
- Cross-case analysis and triangulation of data sources was used to create thematic maps


Questions		Bristol Avon		Camel		Taw		Spey
What are the current sediment	•	Sediment issues from	•	In the amble tributary	•	Poorly managed forestry	•	Abstraction of river flow in
issues effecting your river		upstream resulting in costly		(Fish, diatoms, WFD		operations on steep		the upper catchment for
catchment?		downstream dredging		targets):		ground		hydro-power. It is
	•	Diffuse and point source	•	Land use (exposed ground)	•	Slurry 'Accidents', leaks		estimated 25% of river flow
		sediment	•	Bank poaching		and spills		is diverted to the River Tay.
	•	Agricultural run off	•	Tracks/roads/gates (routes	•	Maize growth / cropping		There are other sources of
	•	Silting issues		for transport)	•	Land use (poor arable land		abstraction throughout the
	•	Impacts on fisheries	•	Camel (SSSI / SAC targets):		management)		catchment such as the
	•	Land cover change	•	Maize	•	Compacted farmland		distillery.
	•	Phosphate associated with	•	Lanivet Stream	•	River bank erosion	•	Impact from river
		the sediment	•	Structures (role in		(livestock)		impoundments, series of
	•	Impacts on river ecology		sediment movement)	•	Invasive Species		dams (3/4) in the upper
	•	Impacts on flooding	•	NIRS – Soil / sediment		(Himalayan Balsam)		catchment.
	•	Influence from urban		reporting	•	Road run-off and road	•	Large river catchment, with
		(impoundments and flood	•	Exceedance of NE targets		verge erosion (hard		high mountains
		defence schemes)		for suspended solids and		surfaces)		(Cairngorms) and a wide
				deposited sediment	•	Lack of vegetation in head		flat valley floor. A typical
				impacts on in-stream		waters		Spey tributary would be
			•	Risky crops e.g. maize /	•	Upland overstocking		steep firing lots of
				potatoes	•	Lack of trees and buffer		sediment down onto the
			•	Over-stocked out wintering		strips in high erosion		floodplain where it
			•	Road sides due to narrow		riparian areas		deposits. The Feshie fan is
				lanes and gateways at	•	Increased phosphate		an example of an
				bottom of sloping fields		(associated with sediment)		enormous source of
					•	Loss of salt marsh habitat		sediment to the Spey.
						through deposition	•	Sediment transport varies
					•	Deterioration of gravels		due to the geology and
						and spawning habitat		rainfall in the catchment.

Quotes

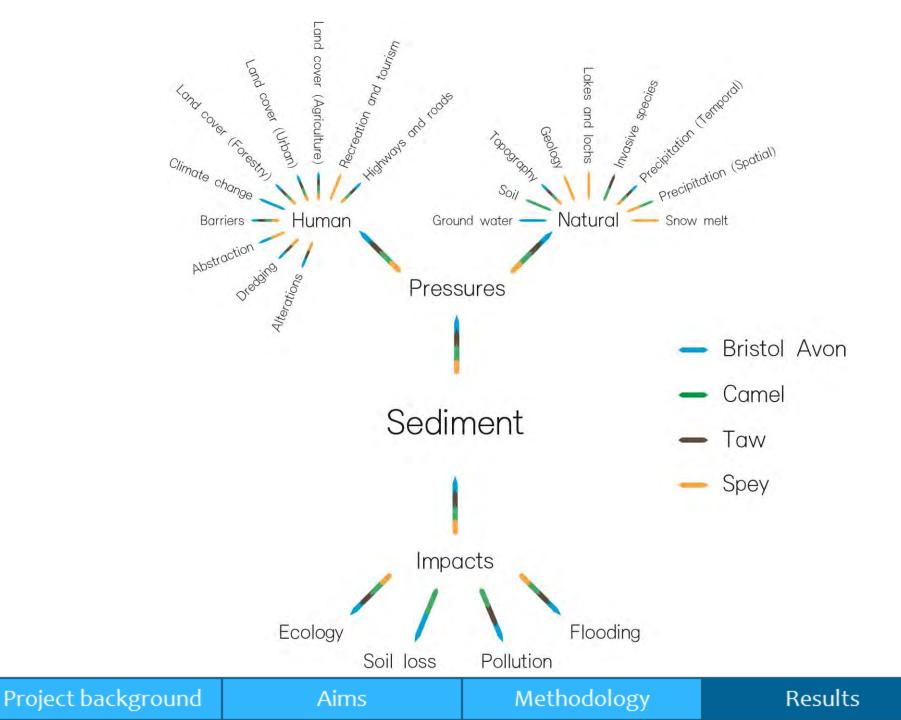
"I think that is one of the things if you want your model to have credibility with stakeholders is they will say it always rains loads more here and it is always more intense here, compared to down there, so I think there would need to be some recognition of that." (Catchment Co-ordinator, Environment Agency, Camel)

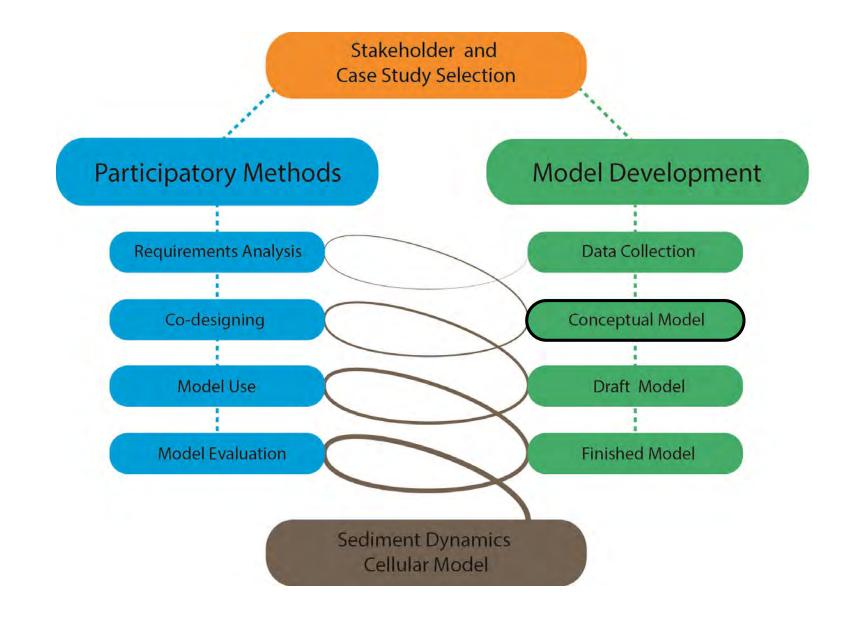
"Also our rainfall, because you know we have **practically nothing for months**, but you ask us next month and **it probably won't stop raining**, so it can be boom and bust." (Project Officer, Spey Catchment Initiative, Spey)



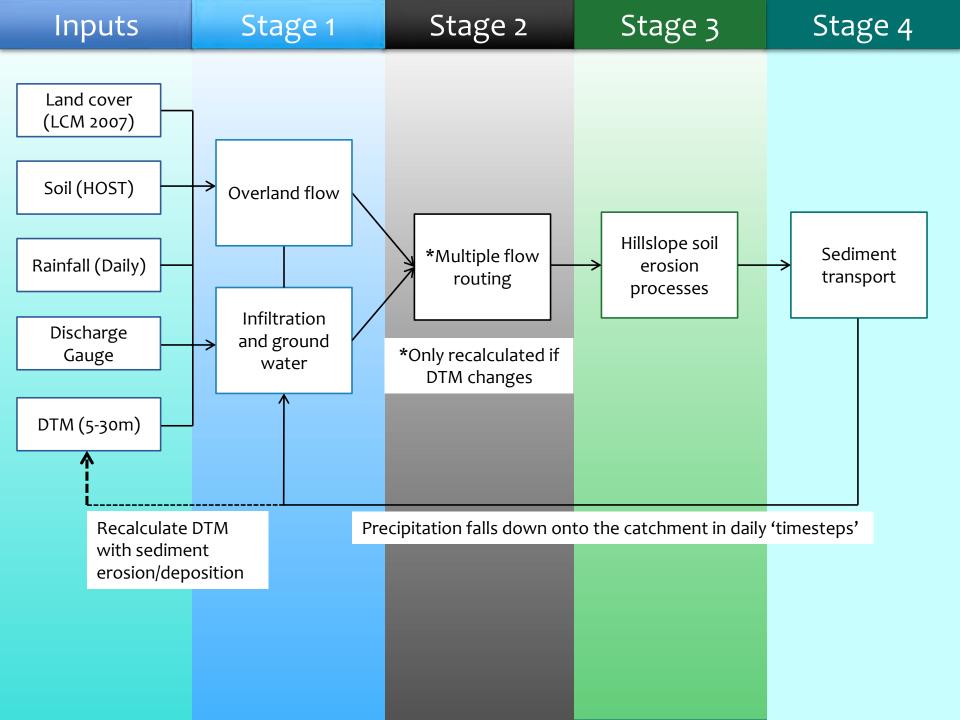
Project background

Aims


Methodology



Project background

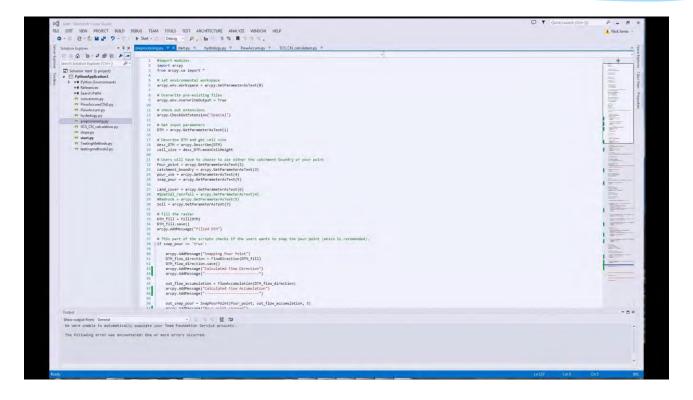

Aims

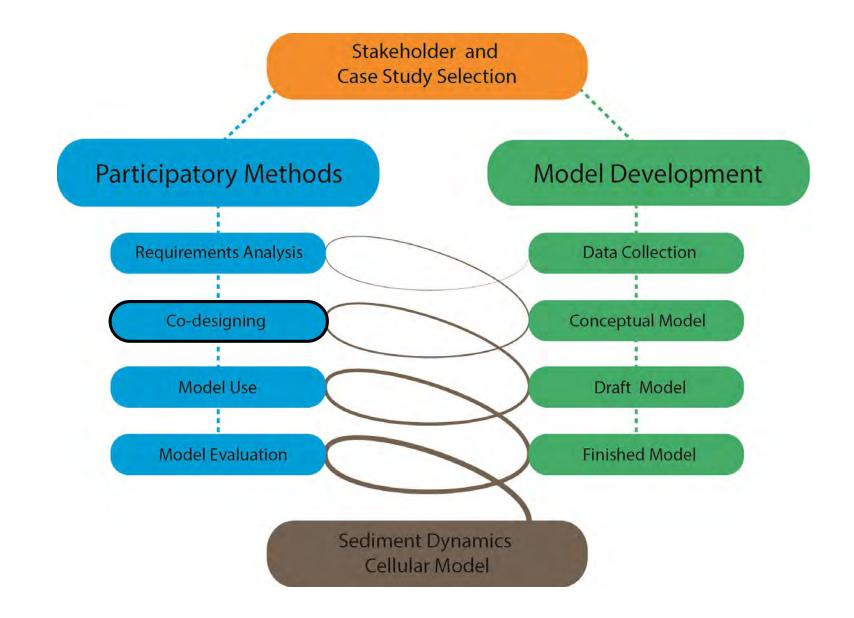
Methodology

Project background Aims Methodology Results

HOME

Welcome to the website for ENGAGE, my PhD research project which uses a participatory modelling methodology to develop a catchment-scale sediment dynamics model. If you want to find out what more about participatory modelling and sediment dynamic models click here.


On this website you will find:


- The latest news
- Background information
- Sections on key concepts and terms
- · Forms for model discussion
- · Model and related document downloads

LATEST NEWS

06/06/2014 - ENGAGE model demonstration part 1

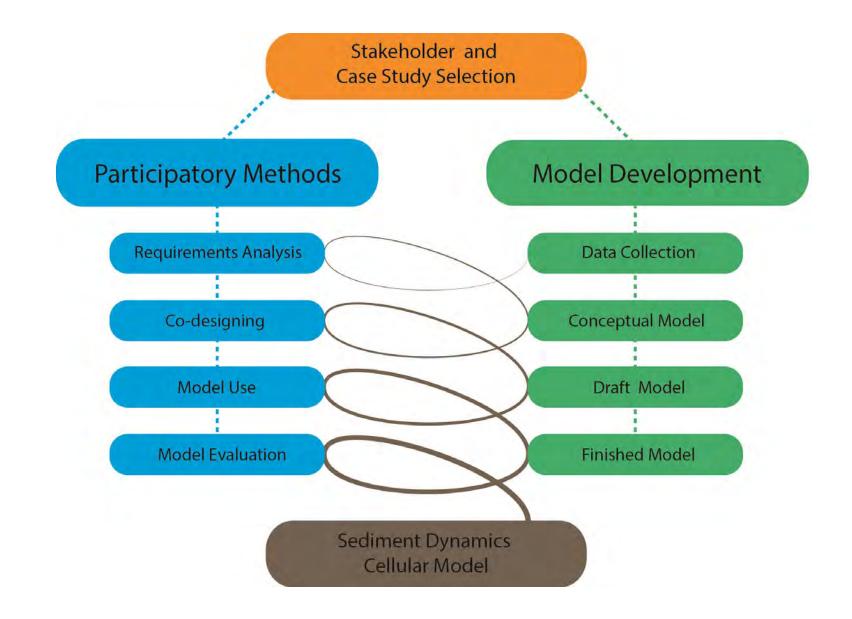
Model: Data processing demonstration

Project background Aims Methodology Results

Co-designing workshop

Three activities:

- Conceptual model discussion
- Model influences prioritisation (Bulls-eye using the pressures from the thematic map)
- Model application (Ranking exercise using the model applications from the thematic map)



Co-design results

lssue	Group	Supporting material	Suggested incorporation
Overstocking	Camel	CF "If you think of a field over winter with 2 cattle compared to 30 cattle it is a completely different effect."	ST "I think you might just have to run it under different scenarios e.g. good farmer scenario, bad farmer scenario."
Сгор Туре	Camel	ST "Are we going to sort of put in what farmers management impact is, so what their management impact is so their management decision is, so deciding to have a kale field alongside the camel in heavy soil is a bad decision so you can basically model bad farming, from the environment point of view and good farming."	ST "DEFRA data basically on the single farm payment data. That does say permanent grassland, pasture land and what crop it is, so I think you can make use of that sort of data and fit it into your 10 metre squares"

Aims

Methodology

Project background Aims Methodology Results

Water quality in two Icelandic rivers: the influence of impoundment, agriculture, glaciation and permafrost Nicholas Jones and Chris Parker In Press, Uncorrected Proof, Available online 20 May 2014. doi:10.2166/nh.2014.268

Thank you questions?

Twitter: @NickIceJones Project website: www.engage-rivers.org.uk